The roots of the independence polynomial of a clawfree graph

نویسندگان

  • Maria Chudnovsky
  • Paul D. Seymour
چکیده

The independence polynomial of a graph G is the polynomial ΣA x |A|, summed over all independent subsets A ⊆ V (G). We prove that if G is clawfree, then all the roots of its independence polynomial are real. This extends a theorem of Heilmann and Lieb [12], answering a question posed by Hamidoune [11] and Stanley [15].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mehler formulae for matching polynomials of graphs and independence polynomials of clawfree graphs

The independence polynomial of a graph G is the polynomial ∑ I x, summed over all independent subsets I ⊆ V (G). We show that if G is clawfree, then there exists a Mehler formula for its independence polynomial. This was proved for matching polynomials in [18] and extends the combinatorial proof of the Mehler formula imagined by Foata [9]. It implies immediately that all the roots of the indepe...

متن کامل

On the Roots of Hosoya Polynomial of a Graph

Let G = (V, E) be a simple graph. Hosoya polynomial of G is d(u,v) H(G, x) = {u,v}V(G)x , where, d(u ,v) denotes the distance between vertices u and v. As is the case with other graph polynomials, such as chromatic, independence and domination polynomial, it is natural to study the roots of Hosoya polynomial of a graph. In this paper we study the roots of Hosoya polynomials of some specific g...

متن کامل

Polynomials with Real Zeros and Compatible Sequences

In this paper, we study polynomials with only real zeros based on the method of compatible zeros. We obtain a necessary and sufficient condition for the compatible property of two polynomials whose leading coefficients have opposite sign. As applications, we partially answer a question proposed by M. Chudnovsky and P. Seymour in the recent publication [M. Chudnovsky, P. Seymour, The roots of th...

متن کامل

On the Stability of Independence Polynomials

The independence polynomial of a graph is the generating polynomial for the number of independent sets of each size and its roots are called independence roots. We investigate the stability of such polynomials, that is, conditions under which the independence roots lie in the left half-plane. We use results from complex analysis to determine graph operations that result in a stable or nonstable...

متن کامل

On the Location of Roots of Independence Polynomials

The independence polynomial of a graph G is the function i(G, x) = ∑k≥0 ik xk , where ik is the number of independent sets of vertices in G of cardinality k. We prove that real roots of independence polynomials are dense in (−∞, 0], while complex roots are dense in C, even when restricting to well covered or comparability graphs. Throughout, we exploit the fact that independence polynomials are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 97  شماره 

صفحات  -

تاریخ انتشار 2007